
The Affirm tech blog 1

H
an

dl
in

g
Bl

ac
k

Fr
id

ay
 s

ca
le

This year, over 165 million Americans shopped

between Thanksgiving and Cyber Monday, and 130

million of them spent at least part of their money

online. Given Affirm’s partnership with thousands of

retailers online, Cyber Weekend is the most important

period of the year for us — so it was critical for us to

make sure our infrastructure was ready to handle

up to five times a normal day’s traffic without any

downtime or performance degradations.

Preparations for Cyber Weekend don’t start weeks,

or even months, in advance — our planning for Cyber

Weekend 2018 actually started in late 2017, when

we applied that year’s Cyber Weekend learnings to

prioritize infrastructure projects we foresaw would be

most important for this year’s peak shopping period.

Handling Black
Friday scale

1.31.2019

Elaine Arbaugh

The effort was truly cross-functional, with teams

across the organization (including Customer

Operations, Risk Operations, and Engineering)

working during throughout the year and through

Thanksgiving week to support customers and ensure

platform stability. Thanks to everyone’s hard work,

Cyber Weekend was once again a huge success for

Affirm! We were able to handle nearly three times 2017

Cyber Weekend’s loan volume without any outages or

performance degradations. At peak traffic levels, we

were performing almost 150 underwriting decisions

per minute, and serving over 150,000 promotional

messages per minute.

Cyber Weekend loan volume compared to the rest of November

The Affirm tech blog 2

H
andling Black Friday scale

One potential bottleneck on our system was database

connections. For the most part, we use Amazon

Aurora MySQL databases in our platform, and with

Aurora, it’s very easy to create multiple read replicas

to handle read-only database access. However,

with our database access patterns, we access the

master databases much more frequently than the

read replicas, either because we are inserting or

updating data or because we need up-to-date data

and cannot tolerate replica lag. As a result, we create

a lot of connections to the master database. MySQL

can experience performance issues when scaling

to handle large numbers of connections since it

creates a new thread for every connection, causing

high resource usage and significant overhead for

thread management and scheduling. AWS also

limits database connections on Aurora MySQL to

16,000, and we anticipated crossing this limit this

year. In order to handle Cyber Weekend 2018 without

downtime, we knew we had to change the way we

handled database connections.

Early 2018: System
improvements
ProxySQL

Client vs server connections with ProxySQL

We decided to use ProxySQL to handle MySQL

connection pooling. ProxySQL also has a lot of other

cool features like query caching, slow query logging,

query routing, and failover support which we plan

to take advantage of later, but we started with just

connection pooling since it was the most urgent issue.

After debating alternatives, like Vitess; speccing out

our solution; writing all the platform and configuration

code to set up ProxySQL servers; and testing on

our development and stage servers, we slowly and

carefully rolled ProxySQL out in production.

With ProxySQL, the ratio of server connections (the

actual number of connections ProxySQL makes to

the database) to client connections (the number of

connections our servers try to create) is between

5–15%. This change gave us a lot more breathing room

before we hit any MySQL connections limits, allowing

us to support Cyber Weekend traffic.

The Affirm tech blog 3

Another project that was key to our Cyber Weekend

success was moving to autoscaling groups for

provisioning servers and automating server setup.

Previously, if we wanted to add new machines in

production to handle additional load, we had to

manually run provisioning scripts as well as 10+ setup

commands, a slow and potentially error prone process.

Before this year, manually provisioning machines was

good enough because we generally only had to add

small numbers of machines infrequently. With the

huge traffic increases we were expecting this year,

it became less feasible to manually add the numbers

of different types of machines we required for Cyber

Weekend, so we decided to move to autoscaling

groups. This project involved automating server

provisioning using AWS autoscaling groups; setting

up the servers, including setting up configs, deploying

to the servers, and starting any required processes;

and, if required, adding the servers to load balancers

to route traffic to them.

We also took this opportunity to switch from using

Amazon’s Classic Load Balancers to Application Load

Balancers and move our machines to the newest

Autoscaling
generation EC2 instances (specifically, we moved

from c3s to c5s). Application load balancers allow

routing traffic based on URL paths or host headers,

meaning we could switch from routing requests to

multiple load balancers using CloudFront rules to only

having one load balancer and doing all the routing at

the load balancer level, simplifying our architecture.

Newer generation EC2 instances are cheaper and

more performant, and we saw huge (20+%) latency

improvements after we switched over.

After the autoscaling project, all we have to do to

set up and run new production servers is change

a configuration in the AWS console, and the rest

will be handled automatically. This project made it

much easier to scale up for Cyber Weekend, and also

made us confident that we could react quickly to

any capacity emergencies we might have during the

weekend.

Additional future work for the autoscaling project

includes automatically scaling up to respond to

increased traffic instead of having to manually update

the number of machines.

H
an

dl
in

g
Bl

ac
k

Fr
id

ay
 s

ca
le

1.31.2019

Latency for a task on c3 (green) vs c5 (yellow) instances

The Affirm tech blog 4

In addition to these infrastructure projects, in the

months leading up to Black Friday engineers across

Affirm worked to make our code more performant,

especially on endpoints we knew to be slow or non-

optimally written. As Garrett discussed in the last

post, Affirm’s Culture of Improving Product Quality,

we improved our median Application Response time

by around 40% in the months leading up to Black

Friday. With these improvements, we require fewer

resources to do the same amount of work, and we can

make more efficient use of our machines. The latency

improvements also improve user experience — some

Tech Debt

H
andling Black Friday scale

people may leave the checkout flow if we take too

long to make a decision.

We also made some improvements to help guard

against failure conditions. For example, we added

timeouts or all our third party requests to guard

against the possibility of massive latency increases

from third-party requests putting extra load on our

servers, which could impact other requests and cause

user-facing errors.

The work that everyone in engineering did to speed

up our code and more gracefully handle possible error

cases was critical to our success on Cyber Weekend.

This year, over 165 million Americans shopped

between Thanksgiving and Cyber Monday, and 130

million of them spent at least part of their money

online. Given Affirm’s partnership with thousands of

retailers online, Cyber Weekend is the most important

period of the year for us — so it was critical for us to

make sure our infrastructure was ready to handle

up to five times a normal day’s traffic without any

downtime or performance degradations.

Preparations for Cyber Weekend don’t start weeks,

or even months, in advance — our planning for Cyber

Weekend 2018 actually started in late 2017, when

we applied that year’s Cyber Weekend learnings to

prioritize infrastructure projects we foresaw would be

most important for this year’s peak shopping period.

Early November: Scaling
to handle 5x load

The effort was truly cross-functional, with teams

across the organization (including Customer

Operations, Risk Operations, and Engineering)

working during throughout the year and through

Thanksgiving week to support customers and ensure

platform stability. Thanks to everyone’s hard work,

Cyber Weekend was once again a huge success for

Affirm! We were able to handle nearly three times 2017

Cyber Weekend’s loan volume without any outages or

performance degradations. At peak traffic levels, we

were performing almost 150 underwriting decisions

per minute, and serving over 150,000 promotional

messages per minute.

The Affirm tech blog 5

For many infrastructure components, handling 5x

scale is as easy as either adding more of a component

or expanding its capacity. For our EC2 instances, we

added additional servers by scaling up our autoscaling

groups. We distribute our servers between two

availability zones to be more resilient — for example,

if lightning strikes a data center and takes it offline,

we won’t go down. We also have duplicate instances

for every machine type, so we have no single point of

failure in our systems. For databases, we increased the

database instance size (for MySQL) or provisioned

throughput (for DynamoDB).

We also worked with our AWS enterprise support

team to create an Infrastructure Event Management

(IEM) plan. We gathered information about the

AWS components that would be experiencing 5x

To validate that we added sufficient scale for our

promos service, which outputs values for promotional

text on merchants’ sites based on merchant and user

data, we load tested using locust.

Load testing our checkout flow and many of our

other endpoints is difficult because so much of what

we do requires real user data — for example, hitting

external services to gather credit reports or data

about a user; user input, like inputting a PIN as part of

authentication; or writing data to the database. Since

Handling 5x scale

Load testing

load during Cyber Weekend and discussed what we

needed to handle this load. The AWS team helped

us reserve EC2 capacity for certain instance types

to make sure that we could add machines if we

needed them, and also set up prewarming for all our

load balancers. Normally, load balancers can start

failing with big traffic spikes, but prewarming them

preemptively prepares them for the maximum traffic

amount we anticipate so they can handle these spikes.

The IEM was very helpful to ensure that all our AWS

components would scale.

Finally, we contacted all of our third-party partners

(for gathering data used in underwriting, creating

virtual credit cards, making payments, etc.) to make

sure that our traffic increase wouldn’t cause any

issues on their side.

our promos service is much simpler and accesses

data in a read-only pattern, it was straightforward to

set up load testing. During our maintenance window,

we ramped up promos traffic to 5x and monitored

endpoint latency, error rates, and system stats for our

promos servers. When we saw latencies increase, we

added additional web servers to determine if server

capacity was the bottleneck, and we used the results

of this test to decide how many instances to use for

Cyber Weekend.

H
an

dl
in

g
Bl

ac
k

Fr
id

ay
 s

ca
le

Sample promo messaging

The Affirm tech blog 6

AWS region locations

H
andling Black Friday scale

Although AWS is generally very reliable (knock on

wood), we always prepare for all possible failures,

including AWS outages. For all our production

components, we have redundant infrastructure in

multiple availability zones, which would keep us from

going down in case of an issue affecting one data

center (for instance, if lightning struck it or there was

a power outage).

Redundant
infrastructure

Although we host all our live infrastructure in one

east coast AWS region, we also have redundant

infrastructure in a west coast region that we are

prepared to failover to quickly in case of a region-

wide outage. For some components, like EC2, setting

up redundant infrastructure was easy, but for others

it required more work and planning.

The Affirm tech blog 7

To scale up our EC2 instances in the west coast

region, we added capacity to our autoscaling groups.

Since we don’t store any data on our machines, the

only complication with adding west coast machines

was updating configs to make sure that the west

coast instances would talk to other servers and

databases in the west coast (to avoid slow and costly

cross region requests).

Multi-region database infrastructure is more

complicated than application server infrastructure

since it requires replicating data across regions.

We use four database types in production: Aurora

MySQL, DynamoDB, AWS ElastiCache for Redis (for

caching high-volume MySQL query results), and AWS

ElastiCache for Memcached (used as a celery result

store).

Aurora MySQL databases are straightforward to

setup since Aurora supports cross-region read

replicas. So, we just had to add cross-region read

replicas for all our RDS instances and double check

that the parameter groups, which determine database

configs, were the same in both regions.

DynamoDB multi-region infrastructure was more

complicated to set up. WithGlobal Tables, AWS

supports multi-region multi-master infrastructure

for DynamoDB — but to set this up as a backup, we

first had to copy all our east coast Dynamo data into

Servers

Databases
Global Tables. To do this, we used AWS EMR and

DataPipeline to import east coast table data into S3

and then export the data in S3 to the Global Tables

following these instructions. With this process, we

could do a one-time, bulk upload of Dynamo data up

to some point in time. For the data added to the table

after the bulk export started, we used a DynamoDB

Cross-Region Replication library to apply real-time

updates to the Global Table by sending the data to

a Kinesis stream which applied updates to the table

after we finished the bulk upload. For our larger tables,

we had to alter this process slightly since a Kinesis

stream can only hold up to 24 hours of data, and the

data import/export process took over 24 hours. So, we

instead streamed real-time updates into a blank table,

and after the bulk upload finished, copied that table

into the real table and changed the stream output to

send data to the real table.

H
an

dl
in

g
Bl

ac
k

Fr
id

ay
 s

ca
le

The Affirm tech blog 8

S3 supports cross-region replication, so we set up

replication for all our S3 buckets that are critical to

our operations. We have a branch with the changes

required to switch over the west coast buckets ready

to deploy in case we had to fail over S3.

For Redis and Memcached, we added duplicate

infrastructure in east coast and west coast, but did

not replicate data. For the caching use case, we would

just hit the database directly for all requests, and

although this would put more load on the database,

S3

we determined that the databases could still handle

the load. For the celery result store use case, the

celery results are only accessed very soon after they

are written, so a small amount of data loss would not

cause much service disruption.

DynamoDB data replication process

The Affirm tech blog 9

We also duplicated our monitoring and alerting

infrastructure, which I discussed in a previous blog

post, into the west coast region. We added duplicate

Riemann (metrics aggregation) infrastructure in

the region, and updated the Riemann configuration

in both regions to send metrics to Elasticsearch

instances in both regions. If we failed over servers,

we would send metrics to the west coast Riemann

servers automatically, and we would have minimal

disruption in our metrics pipeline. If Elasticsearch

went down in either region, we could point Grafana

Most of our components in production are accessed

based on a Route 53 DNS entry. This makes failing

over components very simple: we set up a weighted

routing policy for the corresponding east coast and

west coast components, initially with the east coast

component at 100% and the west coast component

Before Black Friday, we also updated our documentation

for handling production issues. For all the multi-region

components, this meant documenting the process for

failing over to west coast, and any other components

that would be affected if we failed over. For example,

if we failed over our servers, we would also have to

failover databases since cross region database calls

are very slow. In general, we made our instructions as

detailed and clear as possible (for example, we linked

pull requests for anything requiring code changes) so

that the oncall engineer would be able to execute the

instructions quickly with minimal room for error.

We also discussed the criticality of components

so that we would know which components to fail

over first. Our first priority is making sure users can

Monitoring/Alerting

Failover process

Documentation and planningH
an

dl
in

g
Bl

ac
k

Fr
id

ay
 s

ca
le

(which we use for creating graphs based on time

series data) and Cabot (our alerting software) to the

other region’s Elasticsearch cluster.

We also added duplicate servers, load balancers, and

a read replica database for Cabot in west coast. We

actually have active-active Cabot infrastructure — our

west coast Cabot server runs celery tasks, including

ones that run status checks and send out alerts.

We also added duplicate Cabot servers in another

availability zone, which run both celery and a gunicorn

webserver.

at 0%. If we wanted to failover, we would just set

the east coast component to 0% and the west coast

component to 100%.

For databases, to fail over we would promote another

machine to be the master in the AWS console as well

as updating the DNS entry.

checkout, so we would fix that first, then move on to

other components. Our SRE team met every day in the

week leading up to Black Friday to discuss anything

outstanding we had to finish before the date and walk

through out responses to failure scenarios.

In addition, we established and broadly communicated

a chain of command in case of incidents. We wanted to

establish an escalation path for anyone who noticed

an issues, as well as avoid a “too many cooks” scenario

when trying to resolve a problem. We also planned to

follow our existing incident communication plan to

update merchants, the teams who work with them,

and our operations teams about any ongoing issues

and resolutions.

The Affirm tech blog 10

We caught one minor issue earlier on the morning of

Black Friday. Some of our autoscaling servers had a

config incorrectly setup which caused us to call AWS

STS AssumeRole every time we hit our credentials

store, and we were calling it frequently enough to

get rate limited by AWS. Since we were actively

monitoring, we noticed this issue after only one error,

and were able to update the configs before we saw

any major impact (we had fewer than 15 total errors,

and the errors did not impact checkouts).

H
andling Black Friday scale

For Black Friday and Cyber Monday, we chunked our

platform and infrastructure oncall schedules into

8 hour shifts so that our oncall engineers wouldn’t

get too fatigued. The oncall engineers, as well as

many others, actively monitored our critical Grafana

dashboards and Rollbar so that we would catch

critical errors as soon as possible — although we have

alerts that would call us for many critical issues, they

may not go off until a couple minutes after an incident

begins, which is a big deal on Cyber Weekend. Some

of the dashboards we monitored included:

The main event:
Cyber Weekend

• HTTP status codes, latencies, and
 throughputs for critical endpoints

• Cloudfront and ELB 500 rate

• Celery task successes, errors, and latency

• System stats for servers and databases

• Checkout funnel metrics

• Third party request successes, errors,
 and latencies

DynamoDB data replication process

The Affirm tech blog 11

H
an

dl
in

g
Bl

ac
k

Fr
id

ay
 s

ca
le

After a successful Cyber Weekend this year, our

team is already preparing for what we need to do for

next Cyber Weekend. We’re also planning ahead for

significant traffic increases even earlier in the year as

a result of exciting merchant launches ahead!

Some of our plans for 2019 include setting up multi-

region active-active infrastructure so that we can

handle region-specific outages more smoothly

without manual intervention. We’re also planning

on adding policies so that our autoscaling groups

actually scale with traffic instead of requiring a

manual config change, and resharding our databases

Preparing
for 2019

and reallocating our databases on RDS instances so

that we can scale out our master databases even

more.

Preparing for Black Friday scale in 2018 was a long

term, cross functional effort. Thanks to everyone’s

hard work and preparation, we were able to handle

Black Friday scale gracefully this year and are ready

for even bigger challenges in 2019.

If handling these type of challenges sounds interesting

to you (or if you love Segways), apply to join our team

on our careers page!

The Affirm tech blog 12

M
y internship at A

ff
irm

: C
rafting a reliable m

etrics and alerting fram
ew

ork

This past spring, I had the opportunity to join the Risk

Engineering team at Affirm as a software engineering

intern. As a whole, the Risk Eng team is responsible

for the decisioning systems that run Affirm’s identity

verification, fraud, and credit underwriting processes.

Every time a borrower applies for a loan with Affirm,

our systems are responsible for confirming their

identity, determining if there is fraudulent intent, and

deciding how much credit to extend to the user. To

this extent, we build pipelines to transform raw data

from different sources into useful signals, maintain

business logic to make decisions, and support the

development of machine learning models that are

trained on historical data.

My Internship at Affirm:
Crafting a Reliable Metrics
and Alerting Framework

8.24.2018

Rohan Varma

A reliable monitoring and metrics framework is an

important component of a robust decision-making

system. We want to know when our systems are

experiencing above-average error rates or when

there is a significant shift in the underlying data that

we consume in order to respond appropriately. To this

end, I was tasked with redesigning our monitoring

systems that track and log our signal data over

time, and alert us when an anomaly is detected.

The overarching goal was to design and implement

a reliable monitoring framework that was reliable,

accurate, easy to maintain and build upon, and robust

in the case of failures.

At Affirm, we rely on many different signals — defined

here as schematized instances of data (e.g. a user’s

income to debt ratio) — to power our decisioning

systems. For example, we train machine learning

models on these signals to inform our decision to

extend credit to applicants or not. The underlying

assumption here is that the data a model is trained

on is roughly similar to the data it does real-time

Metrics & Monitoring: An Overview
predictions on. However, this assumption sometimes

fails to hold true due to several factors like seasonal

variation and underlying changes in the distribution of

Affirm’s customers. When this happens, it’s important

to have a metrics framework tracking our signal data

to notify us about these changes in signal values and

to allow us to respond appropriately.

The Affirm tech blog 13

There are several different things to consider when

architecting a monitoring framework. We want to

design for simplicity and ease of use, but without

sacrificing configurability and reliability. Ideally, the

1. User Friendliness. Metrics should be easily

interpretable by any audience. A low-friction setup

should exist to quickly add and deploy additional

metrics.

2. Reliability. We use metrics to ensure that our

systems are behaving as expected. How can we

ensure that the monitoring system itself is reliable?

Key Requirements of a Reliable
Metrics Framework

Our solution

3. Accuracy. Our monitoring system should quickly

alert us at the correct urgency level in the case of

regressions. We should also ensure that our system

isn’t too noisy, so that each alert is truly meaningful

and addressed appropriately.

4. The Big Picture. Metrics are important to several

teams including data science, engineering, product,

and legal. Given this, how do we know what metrics

are the most important to track and who to alert in

case of anomalies?

system’s services should also be consumable by

product, business, and legal teams. With this in mind,

we designed our solution with a few key requirements:

M
y

in
te

rn
sh

ip
 a

t A
ff

irm
: C

ra
ft

in
g

a
re

lia
bl

e
m

et
ric

s
an

d
al

er
tin

g
fr

am
ew

or
k

The Affirm tech blog 14

We decided to use Luigi, an open-source package for

managing batch pipelines that supports complex job

management and automatic retries, to encapsulate

the different tasks which query our underlying data

stores and wrangle data.

We set up configs for our signal monitoring tasks in

files generated with saltstates. These configs include

which table to read data from, where to upload data

to, how to aggregate the results, and whether to send

an email notifying a list of users after the job has

completed.

Our job then reads data from tables hosted in

Redshift, Amazon’s data warehousing solution that

allows for complex querying against large amounts

of data. The job then does some intermediate data-

wrangling, including reading historical metrics data

from S3, Amazon’s key-value storage solution, and

computing scores that quantify how much that day’s

signals have deviated from past history.

Next, these results are encapsulated into a

schematized format and uploaded to S3. Later,

in a separate task, the metrics are loaded into

Elasticsearch — an open-source engine that allows for

search and analysis of data.

In addition to a reliable framework to measure and

upload metrics for data on a regular basis, we also

found it important to be able to easily visualize this

data over time. Moreover, we want to automatically be

alerted when unexpected spikes occur. To accomplish

this, we leverage Grafana, a dashboarding service,

and Cabot, an alerting system, respectively.

Visualizing Metrics with
Grafana and Cabot

After we’ve set up a system to load our data into

S3 and Elasticsearch, we can configure a Grafana

dashboard to read data from an Elasticsearch index

and render it in a dashboard. Below is an example

configuration for a dashboard:

M
y internship at A

ff
irm

: C
rafting a reliable m

etrics and alerting fram
ew

ork

The Affirm tech blog 15

After configuring several different panels and ensuring

that our jobs to upload data to the correct indexes are

The final piece of our monitoring system is to

configure Cabot to alert us based on our Grafana

dashboards. Cabot allows you to configure alerts

based on threshold values, and has support for

running reliably, we end up with a dashboard like the

below (with some of our information redacted):

different levels of urgency and notifications to users

or on call schedules via Hipchat, email, text, and

phone call. An example alert is shown below:

M
y

in
te

rn
sh

ip
 a

t A
ff

irm
: C

ra
ft

in
g

a
re

lia
bl

e
m

et
ric

s
an

d
al

er
tin

g
fr

am
ew

or
k

The Affirm tech blog 16

In the end, we ended up with a reliable monitoring

and alerting system that automatically retries in the

case of failures, aggregates our data according to

configurable specifications, and automatically emits

schematized metrics that we can visualize and be

alerted on.

There’s still a lot more work to be done, however.

Future improvements include designing better

algorithms for anomaly detection and increasing

automation around the process of adding queries

Putting it all Together
for additional metrics and setting up dashboards in

Grafana. Nonetheless, since we launched this solution

we’ve been able to monitor fluctuations in key data

with much more reliability and consistency, allowing

our teams to be alerted when something is off with

our signal data. Overall, this was a great project to

work on, since it allowed me to think through how

a system should be designed and architected while

exposing me to several different technologies and

providing value to the rest of Affirm.

M
y internship at A

ff
irm

: C
rafting a reliable m

etrics and alerting fram
ew

ork

The Affirm tech blog 17

H
ow

 A
ff

irm
 is

 d
iff

er
en

t:
U

nd
er

st
an

di
ng

 th
e

fu
nd

am
en

ta
ls

 o
f c

re
di

t

Despite the ubiquity of credit, few consumers know

enough about its complex terminology and cost

structure to make fully informed decisions. And

most credit providers take advantage, charging a

constellation of fees in order to maximize profits. The

result is that in 2016 alone, American consumers paid

more than $90 billion in fees.

At Affirm, we believe consumers should be able to

benefit from a more honest and transparent form

How Affirm Is Different:
Understanding the
Fundamentals of Credit

9.21.2018

Sandeep Bhandari

of credit. We quote customers a fixed price for their

credit up front, so that when they sign up for a loan,

they know exactly what they will end up paying. No

matter what happens after they confirm their loan,

they’ll never owe us a penny more than the amount

they initially chose.

This FAQ is designed to clarify some of the subtleties

around credit (including interest), how it affects

consumers, and how Affirm is different.

The Affirm tech blog 18

Let’s start with the basics. When applying for and

using a credit card, consumers typically pay attention

to one number: Annual Percentage Rate or APR.

The Truth in Lending act requires lenders, by law, to

express interest on an annual basis — hence, APR. The

purpose of expressing an APR is to offer customers

an easy way to compare credit products.

Lenders must express interest on an annual basis, but

that’s not necessarily how interest is calculated and

charged. Interest on loans via Affirm, like most credit

cards, actually accrues on a daily basis.

Some experts believe APR can be misleading in

relation to short-term credit products, like credit

cards. For one, most credit cards offer variable APR

rates, meaning they will fluctuate according to the

market, an index, or the U.S. prime rate. Second, the

daily percentage rate could change depending on

While Affirm does express interest rates in terms of

APR — as required by law — we differ in four major

ways:

What is APR?

But It’s Not That Straightforward

So How is Affirm Different?

a number of factors including the current principal

balance and potential fees, like late fees or a yearly

fee. And most credit card fees — on average, six, but

as high as twelve per card — are never part of the APR

calculation.

These are just a few of the reasons why calculating

the actual cost of a purchase made on a credit card

can be difficult for the everyday consumer. And most

credit card issuers don’t offer any of this information

to consumers — they must figure it out themselves.

H
ow

 A
ff

irm
 is different: U

nderstanding the fundam
entals of credit

1. Simplicity: Our user experience is mobile optimized

and only asks users for five pieces of information to

make a credit decision.

2. Transparency: Affirm shows consumers up

front — before even accepting the loan — what the

total purchase cost will be, including the total interest

amount.

3. Predictability: Affirm doesn’t charge any late,

penalty, or annual fees which could add to the

principal balance, and therefore complicate interest

costs.

4. Control: Unlike credit cards, Affirm’s app and

point-of-sale loans are not a revolving line of credit.

Instead, we approve customers only for the amount

they’re looking to purchase — on their terms. They can

select to pay over 3, 6, or 12 months. And there’s no

penalty for paying it off early.

Credit cards, on the other hand, can be confusing and

complex when determining interest and total cost on a

single purchase. Especially if it charges compounding

interest.

The Affirm tech blog 19

Most credit cards charge compounding interest, or

interest on interest. More specifically, compounding

interest is interest charged not only on the principal

balance but also on interest or some fees that have

already accumulated.

No. Interest on loans through Affirm are only charged

interest on the purchase amount — or, principal

balance. It’s why we can be transparent about the

total cost at the time of credit approval, even before

the user accepts it. And because we never charge any

late or penalty fees, that amount will never change.

Ever.

As stated above, expressing an interest rate for a

credit product via an annual rate (APR) does not tell

the whole story.

That’s why it’s important to understand what the

effective interest rate is on a purchase. Basically, it is

the interest rate that is actually paid over a given time

period on a loan or credit product.

For example, if someone chooses to pay for a purchase

with Affirm over a six-month term at 20% APR, the

Wait, What’s Compounding
Interest?

Affirm Doesn’t Do That?

It’s Also Important to Understand
The Effective Interest

H
ow

 A
ff

irm
 is

 d
iff

er
en

t:
U

nd
er

st
an

di
ng

 th
e

fu
nd

am
en

ta
ls

 o
f c

re
di

t

effective interest they will pay on that purchase will

not exceed 5.91%.

Here’s how it works. Someone applies, and is approved,

for a $600 purchase with Affirm. The total payment

amount for each month is $105.91. The total interest

on the $600 is $35.48, or 5.91%.

The Affirm tech blog 20

Actually, most 0% APR promotions offered by other

credit cards — typically store-branded cards — are

deferred interest promotions.

Most of these offers are 0% APR for 12 months,

meaning that no interest will be applied to any

purchases made within that time frame. The catch,

however, is that if any balance remains after those

12 months — even just $1 — or no payment has been

made in 60 days, interest will not only be charged

on the remaining balance but also on the full original

balance. This doesn’t include any penalty or late fees

that could also be applied.

What About Affirm’s 0% APR
Promotion? Credit Cards Offer
That All the Time.

Affirm’s 0% APR promotions, on the other hand, will

never include deferred interest or penalty fees of any

kind. Users can just select their term length — 3, 6, or

12 months — and are shown the full amount owed for

each month and in total. The selected amount will

never change, no matter what.

Affirm loans are made by Cross River Bank, a New

Jersey State Chartered Commercial Bank, Member

FDIC.

H
ow

 A
ff

irm
 is different: U

nderstanding the fundam
entals of credit

The Affirm tech blog 21

En
d-

to
-e

nd
 te

st
in

g
w

ith
 W

eb
dr

iv
er

IO

At the start of 2018, the front-end infrastructure

team at Affirm began to replace our existing end-to-

end (E2E) testing tools with WebdriverIO (WDIO). In

this blog post, we’ll share some details around how

WebdriverIO has helped us improve the front-end

developer experience and the overall testing culture

at Affirm.

End-to-End Testing
with WebdriverIO

7.13.2018

Mike Phillips

Affirm’s team, codebase, and business have

undergone rapid change within the past few years.

In 2016, Affirm’s front-end team consisted of about

two or three front-end developers working on two

web apps and a public JS library (affirm.js). As of

July 2018, there are approximately thirty engineers

making front-end contributions from nine distinct

teams, working on fourteen different web apps with

twenty-one internal libraries.

Affirm, as a whole, has undergone similar growth.

This time last year, we had one office that housed

around 220 employees. Today, we have almost 400

Our previous E2E testing tools used a combination

of Python, behave, selenium, and tox to get the job

done. Unfortunately, after several years of serving

their purpose these tools became a common source

of frustration.

Context switching between Python, JS, and a lot

of custom boilerplate code made it difficult for

engineers to write, maintain, and debug these tests.

The Importance of
E2E Testing at Affirm

Motivation to Switch

employees split between our SF headquarters and NY

office, and are soon opening a third space here in San

Francisco.

With the rapid growth of Affirm’s engineering team,

the increasing complexity of our codebase, and the

scale of Affirm’s business, E2E testing is more critical

than ever. It’s simply not feasible to manually QA each

app that is affected by any given update. These tests

help prevent regressions in critical functionality and

give engineers confidence as they deploy their work

throughout the day.

A few recent post-mortems had also highlighted the

need for cross-browser and visual regression testing

capabilities.

The shortcomings of our existing tools were actively

preventing or discouraging engineers from writing

important E2E tests. We needed to find a tool that could

handle all of our testing needs while also providing an

easy and rewarding developer experience.

The Affirm tech blog 22

End-to-end testing w
ith W

ebdriverIO

Stable

Capable

Easy

Switching tools is often a major undertaking for any

codebase. We wanted to ensure that whatever tool

we chose for end-to-end testing would meet our

immediate needs and also provide a solid foundation

for the future. Specifically, we wanted to find a tool

with the following qualities:

Few things are more frustrating than flaky tests. An

end-to-end testing tool that meets all of our needs

but is buggy and unreliable is a non-starter.

In addition to being stable itself, we needed a testing

tool that made it easy for developers to write stable

tests. For E2E tests, this means handling things like

waiting for page loads or interacting with elements

outside the viewport.

We wanted an E2E testing tool that would:

• enable developers to write tests that can do

everything their users can

• integrate with a cloud testing service like

Saucelabs or Browserstack

• support testing capabilities like cross-browser and

visual regression testing

• provide flexible configuration and customization

Finally, it was really important to find a tool that would

be easy to use. Writing tests is an important part of

the work that goes into front-end engineering, but it

shouldn’t be a difficult part. We wanted to find an end-

to-end testing tool that would be easy to learn, easy

to use, and easy to debug.

After some investigation and experimentation with

different tools, we eventually settled on WebdriverIO.

The remainder of this post will cover some of our

favorite things about WebdriverIO and how it helps us

accomplish these aforementioned goals.

Our Goals

The Affirm tech blog 23

En
d-

to
-e

nd
 te

st
in

g
w

ith
 W

eb
dr

iv
er

IO

Documentation

Synchronous Mode

Flexible configuration

Helpful Browser Commands

First off, WebdriverIO has excellent documentation.

The Developer Guide makes it easy to learn how to set

things up, and the API docs explain how to interact

with the browser and write your first test.

One of our favorite features, “synchronous mode,” was

introduced to WebdriverIO in v4. Synchronous mode

enables you to write your asynchronous test steps as

if they were simple, synchronous function calls.

WebdriverIO provides flexible configuration and tons

of customization opportunities.

The heart of our WDIO project is the base configuration

file. The configuration file gives you control over a

wide array of options like log levels, default timeout

durations, and what frameworks you use to run your

specs (mocha, jasmine, or cucumber).

One particularly helpful configuration option is the

ability to organize your tests into custom suites.

Since we keep all of our end-to-end tests in the same

directory, we choose to organize them by application.

This makes it easy for us to set up efficient test

automation on Jenkins that only runs the subset of

our full test suite relevant to the application being

deployed.

WebdriverIO’s API provides over 200 different

browser commands to help you get the job done.

Many of WDIO’s browser commands are just

implementations of the Webdriver protocol spec.

But, WDIO then uses these commands to build more

intuitive, easy-to-use commands.

For example, the browser.setValue() command can

be used to set the value of an input. Under the hood,

this command uses the browser.elements(), browser.

elementIdClear(), and browser.elementIdValue()

commands as building blocks.

In addition to implementing and extending the

Webdriver protocol, WDIO also provides utility

commands that are directly integrated with WDIO and

make it easy to work with.

One of our favorite features, “synchronous mode,” was

introduced to WebdriverIO in v4. Synchronous mode

enables you to write your asynchronous test steps as

if they were simple, synchronous function calls.

WebdriverIO Highlights
Some good examples include the browser.debug()

command, which makes it easy to pause your tests

and debug your application, as well as “wait” utilities

like browser.waitForVisible() that help developers

write stable tests.

Finally, WDIO also provides commands that use

Appium to enable running tests on mobile devices.

The Affirm tech blog 24

End-to-end testing w
ith W

ebdriverIO

Powerful Add-on Services

Services are optional libraries that you can use to

extend WebdriverIO’s core functionality to provide

easy integrations and additional capabilities.

The Chromedriver service uses the wdio-

chromedriver-service library to make it painless to set

up and run WDIO tests on Chrome. With our setup, a

new developer at Affirm can start running end-to-end

tests in Chrome on their local machine in a few simple

steps:

The Sauce service uses the wdio-sauce-service

library to provide a simple integration with Saucelabs.

Paired with our custom configs mentioned above, it

is incredibly simple to run any browser and device

configuration on Saucelabs.

The Visual Regression service uses the wdio-visual-

regression-service library to provide custom browser

commands that make it easy to add visual regression

tests to any of your WDIO tests.

The visual regression service provides three new

browser commands, as well as a system for managing

screenshots and generating pixel diffs. With these

building blocks, it’s possible to build a flexible visual

regression testing workflow customized to the needs

of your team.

Affirm currently uses all of these services with

WebdriverIO, but they are only a small subset of its

larger list of available services.

WDIO makes it easy to extend this base config so you

have the flexibility to do things like per-app or per-

environment customization. We drew inspiration for

our config organization from Kevin Lamping’s blog

post on the topic.

Our current list of configs is below. If we want to

extend this list to other browsers or environments in

the future, it will be easy to do so.

We use a Makefile and environment variables to make

running a specific suite or config as simple as:

The Affirm tech blog 25

We’re still in the early days of WebdriverIO at Affirm,

but it’s been a pleasure to use so far. Ever since our

initial experience, it’s proven to be a stable, capable,

and easy-to-use tool for our team.

This post highlights one of the many major front-

end initiatives happening at Affirm. If you’d like to

learn more and get involved, check out our Careers

pageand get in touch!

Future Work

En
d-

to
-e

nd
 te

st
in

g
w

ith
 W

eb
dr

iv
er

IO

The Affirm tech blog 26

